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ABSTRACT

Modifications of the Dugdale model are introduced which eliminate
the discontinuous transverse displacement at the end of the crack and permit
the satisfaction of a Mises yield condition at the crack tip. Caleulations
are made to obtain additional points on the elastic-plastic interface

near the crack. Suggestions are made for introducing work-hardening properties

of the material.



I INTRODUCTION

The first theoretical investigation of the stability of cracks in a
loaded structural element was made by Griffith [1]. He utilized the analysis
of Inglis [2] for a cracked elastic plate subjected to tension in order to
formulate a stability criterion. The results were so simple that they
remain quite popular even though the solution yields stress components which
are singular at the crack tips. Correspondingly,the initially parallel
edges of the crack are wrenched apart and rotated through a relative angle
of n at the crack tips.

These singularities of stresses were finally eliminated in works by
Christianovitch [3], Barenblatt [4], and Dugdale [5]. In all three of
these investigations the soclutions are still obtained from the linear
theory of elasticity, but other loads in addition to the uniform stress
field at infinity are acting to cancel the fundamental singularities. In
the example considered by Christianovitch the pressure of a l1iquid which
partially wets the surface of a crack is balanced against an externsal
compressive stress acting far from the crack. Barenblatt has introduced
the concept of cohesive forces acting in a very small end zone of the crack
which resist the applied loads. This model is very useful for the
description of brittle materials while the model of Dugdale is applicable
to very ductile materials. The latter model provides a simple representa-
tion of the forces exerted by the plastically deformed material at the crack
tips. However, the Dugdale model does not give a criterion for the
ultimate strength of a cracked panel.

In the present report some refinements are suggested. Although

some of the properties of the plastically deformed regions are considered,
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1t is found that additional informstion can be obtained from simple
solutions from the theory of linear elasticity.

In his original model, Dugdale replaced the very complicated non-
linear prqblem of the growth of plastic regions at crack tips by a simpler

linear elastic problem with new boundary conditions.
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FLASTIC REGIONS IN A THIN PLATE DUGDALE 'S REPRESENTATION
OF DUCTILE MATERTAL

Dugdale observed experimentally that if the plate is rather thin and if
the material is very ductile then the yielded zones are quite narrow and
have the shape indicated by curves I' in Fig. 1. He therefore established
a comparatively simple, but very useful, model as indicated in Fig. 2.

In the mathematical model the slit is extended straight through the plastic
region out to the point A. The fact that yielding has occurred inside the
curve I' is replaced by the following conditions. The infinite elastic
plane is artifically extended right up to the x-axis. Boundary conditions
are not specified on the actual interface I' but they are given on the

segment FA, which will be called yield segment here in contrast to the




yield zone. The value of the normal stress on the yield segment is taken
to be Ys’ the yield stress in simple tension, and the length of the yield
segment is adjusted with respect to the real crack length 2¢ and the applied
tensile stress T so that stresses are finite (and continuous) at point A.

The simple relation obtained by Dugdale is

= arc cos (%ﬁ (1)
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Dugdale's experiments show that the length of the yield zone agrees
remarkably well with equation (1). Similar experiments by Rosenfield, Dai
and Hahn [6] and by Forman [7] also agree with Dugdale's results. However,
the result (1) does not define a critical stress for rupture at the crack

tip. In the next section we will consider some refinements which must be

made before a failure criterion can be introduced.




IT DISPLACEMENTS AND STRAINS AT THE CRACK TIP FORTHE DUGDALE MODEL

It would be desirable to be able to determine the critical stress
level T which causes failure in a cracked plate of a material with given
yield stress and strain-hardening characteristics. This suggests that a
certain measure of strain at the crack tip might be the proper quantity
to use in a failure criterion. This question was considered by Goodier
and Field [8]’who noted that the solution of the problem posed by Dugdale
leads to a discontinuity of transverse displacement, v, at the end F
of the real crack. The vertical displacement of the edges of the slit are
indicated in Fig. 2 in a greatly exaggerated scale. The finite stress
condition (1) does assure that the ends of the slit close smoothly at A
but the sides agtually open between F and A as is indicated by the cross
hatching. Therefore it is not possible to use the usual definitions to
discuss the transverse strains on the yielded segment. As an alternative
measure of the strain, Goodier and Field proposed that there exist some
"gage length" 4 ané then the "eritical strain" can be defined as the ratio
of the vertical displacement at F divided by the gage length, i.e.,

A’

F
Coritical - d (2)

Although this does give a "strain" which has the correct dimensions and
which increases monotonically with the load T, it is not clear how this can
be related to other tests such as a simple tension test to determine g
critical load for the cracked plate.

Rosenfield, Dai, and Hahn did modify the normal stress acting on the
segment FA so that the stress correspunds to a local transverse strain
defined as in (2). These authors replaced the constant normal stress of

Dugdale's model with s plecewise constant distribution of normal stresses.
ug P
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The stress on each segment was set equal to the stress measured in a simple
tension test at the same value of strain. However, since it was not
possible to define the gage length, the results remain a bit indefinite.

We will now consider some improvements of Dugdale's model which are
necegsary for the definition»of 8 critical strain. Additional consideration
will be given to the coupling between the elastic portion of the plate and
the plastically deformed material within the yield zones bounded by the
curves [ in Fig. 1. Although’the elastic region really is bounded by the
interface curve T, it is convenient to represent the solution in terms of an
elastic plane which is contiﬁued across I' up to the real axis just as in
Dugdele's formulation. This formumlation is chosen because it is still
impossible to solve the plane elasticlity problem for data given on an
arbitrary contour such as I, but the complex variable methods can be used
effectively for the plane with a slit. Eventually it will be desirable to
satisfy certain boundary conditions on the curve I but it is possible to do
that by modifying the stresses on the segment FA of the slit plane. Now
we will consider application of different loads to the segment FA, and

we begin with modificetion of the normal load.



IITI MODIFICATION OF NORMAL LOADS

In order to achieve a definition of strain near the crack tip which
will be compatible with any continuum theory it is necessary to at least
eliminate the jump in vertical displacement across fhe slit at point F.
Simple solutions of the loading of an interval of the edge of a half-
plane by a constant pressure shows that if the resultant force is held
constant as the length of the interval shrinks, then the local displacement
can be made very large, see Muskhelishivili [9], Section 93. Therefore, we
expect that the displacemgnt Vg can be eliminated by adding more tensile
stress near the poiht F.

Basic solutions of the type used by Dugdale can be superposed to
obtain an arbitrary step-wise constant distribution of stresses on the yield

segment, FA, in the manner of Rosenfield, Dai, and Hahn. An example with

five steps is sketched in Fig. 3.
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Fig. 3

STEP-WISE CONSTANT DISTRIBUTION OF NORMAL STRESS
ON THE YIELD SEGMENT FA




The calculations of stresses and displacement are simplified if the simple state

of compression Uy = -T, UX = §y = 0 is first added to the problem sketched

bove. Then all stress components tend to zero at infinite distance from
the crack.

Methods for the solution of the first fundsmental problem of an elastic
plate containing an elliptical hole are given in the books of Muskhelishvili
and Sokolnikoff [10]. We will use the notation of Sokolnikoff here
and consider the limiting case of a flattened ellipse or slit. However,
to illustrate the types of loads and to discuss the mapping, it is more
convenient to sketch én elliptical hole in the physical or z-plane and keep
in mind that our analytical results have been specialized to the flattened
ellipse. The basic problem of a single step in normal load is sketched in

Fig. k.

Fig. 4
THE ELLIPSE BEFORE FLATTENING TO A SLIT
AND ITS MAP IN THE {-PLANE
The first step of the analysis is to map the exterior of the hole of
the z-plane onto the unit circle in the t-plane. The transformation for

the general elliptical hole is



z = o) = RG +n) (3)

The boundary of the elliptical hole is denoted by C, and the positive
direction on C is clockvise so that the elastic region lies on the left.
Correspondingly, the po.:itive direction on the boundary vy in the (-plane

is counterclockwise. 7he point z, in the first quadrant at the end of the

J
step of normal pressure in the z-plane is mapped into UJ in the fourth
quadrant on the unit circle Y. The map of the conjugate point EE on the
lower edge of the ellipse goes into T, = elaJ.

J
In Appendix A the solution for the stress potentials is discussed

more fully, and here we will consider some results for the slit where m = 1

in the mapping function (3). The stress compenents are obtained from the

formulas
-p biy
o+ 0, = hRe{§;%~[Luj(§) + Egji‘] } (ka)
-p 2 8iwx,t
. g £ - 1 ' J
o -0 +1ioT = —2 =2 (r +=) [L (¢) - ——————-]
8iy 16iy,* z
J J- Jq!
+ + - L_.(t) (4b)
1-t7 (1-r2)2 R34 }

where the functiops L3J(§) and th(C) are

Luj(c) = Llj(c) + ng(g) L3j(g) = Llj(g) - ng(g)
o -C - -C (5)
L,(¢) =il L,.(¢) = in —+—
13 5, - ¢ 23 -0, - ¢
and the imaginary parts of the last functions are positive with
0L IleJ, Ingj < 2n (6)

The positive angles which are marked in the unit circle of Fig. L represent

the imaginary parts of LlJ and LEj'




Closer examination of equations (4a) and (4b) shows that the stresses
do tend to zero as { — O (or !zl - «) but there is a singularity at ( = +1 due

to the terms which are directly proportional to « This corresponds, for

-1/2

5
example, to a square root singularity of the order (z - 2R) at the
right hand end of the slit in the z-plane. The original solution of Inglis
which was used by Griffith to establiish his energy criterion for crack

growth can be obtained by setting

o, o = 3+ Py = By =T (7)
in equgfions (4a) and (&b).

In order to eliminate the singularity of the Inglis solution,
Zheltov and Christianovich and Dugdale added one more term due to a step

load. Dugdale chose

T
by 7 _Ys RS ?;

o3

(8)
which results in equation (1).

As Rosenfield, Dai, and Hshn noted, it is possible to superpose N+1
steps and obtain finite stresses at point A if the following finiteness

condition is enforced

N
) by = 0 (9)
J=0

The stress components due to the steps in normal load are obtained by
summing over j from O to N in equations (l4a) and (4b), and all linear terms
in the o, cancel because of the finiteness condition (9). The applied load

J

is

(10)




The state of simple tension must be added to return to the original
problem indicated in Fig. 3. This simple tensile field can be modifiled by
rigid body moticns so that v(x,0) = O, and hence the vertical displacement
at F depends only on the various step loads.

In Appendix A it 1s shown that the contribution of the Jth step load

to the vertical displacement at the edge of the slit is

2 2
‘ sin" (o, +0) (sina,-sing)
%2;1 = Py —é—nﬁ cos 6 lr}-—2—-‘j—-— + cos o, 1n J 5 E-pjvnj(e) (11)
' v sin (aJ—G) (singﬁ-sine)

The elastic constant #» for the case of generalized plane stress zan be

expressed in terms of Poisson's ratio v:

w = 3¢ (12)

l+v

Dimensioniess loads ¢, will now be introduced where

3
P
¢, = -4 (13)

and Yh is an arbitrary reference stress for the normal loads. . A boundary

point o = eie in the (-plane goes into the following point on the slit
X =2 R cos 8, y =0 (1k)

The end of the real crack corresponds to 6 = +¥. so the displacement

1

conditions at F can be written in terms of the functions of (11).

N
}: cJan(al) = 0 (15)
320

This condition as well as the finiteness condition (9) can be satisfied if
N> 2.
In general the opposite gides of the slit will coverlap along the

yield segment FA, but this is acceptable since we are establishing an elastic

10




solution which is valid only outside the curve I'. However, from elementary
considerations of both the elastic and the plastic regions near point F we
can conclude that the slope of the real crack must also vanish at F.
From the symmetry of the real plastic region it follows that the shear
stress, Txy’ and the vertical displacement, v, are identically zero on the
x-axis. Hence, if we assume that the strain-hardening is orthotropic, that
is, the directions of principal stresses and principal strains coincide,
thenbthe shear strain, ny, must also be zero on the plastic side of T at
F. Of course, the shear stress, Txy, and consequently the strain, ny’ are
also zero on the elastic side of F so the real crack must close with zero

slope at F. This slope condition can also be expressed in terms of the

displacement functions (11).

N v,
ZE: ¢y 3= (@) =0 (16)
§=0

av
Since the term —agl(e) has a logarithmic singularity at 6 = @y, it follows

that we must choose

e, = O (17)

It is useful now to briefly consider the yield condition on the elastic
plastic interface. It will be assumed that a Mises yield condition holds
in the plastic region, and for our case of plane stress 1t can be written

_ 2, 2 2 2 2
f 3(J2 k%) = A 3Txy 3k = 0 (18)

In general the term k2 depends on the plastic strain history, but for
initial yielding or points on the elastic-plastic interface, /3k can be
taken to be the simple tensile yield stress Yé so that

- 2 2 ~
f = o, - 0.0 * Gy + 3Txy - Y§ = 0, onT (19)

11



The curve T' passes through the point F at the end of the free surface of

the real crack so two of the stress components vanish at F and we find

ayF_ = TxyF_ = 0, oxF_ = ¥, (20)
where the subscript F_ denotes the limiting value from the left.

Now we would like to adjust the coefficients cJ of the basic normal
load solutions so that condition (20) would be satisfied. However, this
is impossible because of the following result which can be obtained from
Secion 93 of Mushkelishvili's book or from careful inspection and super-
position of solutions of the type given in equations (l4a) and (Lb).

The two stress components Ty and Uy are equal at a point on the edge
of an elastic half-plane y > O if

a. The shear stress TXy vanishes on y = O,

b. All stress components are of order O(%) as lz!l = =, and

c. The component oy is continuous at the point of observation.

A statement of this type was made by Goodier and Field except that

conditions b and ¢ were omitted. The state of simple tension

It

o =T, . =T

y X Xy 0 would not be excluded if b were left out, and ¢ is

necessary if we are to discuss values at a point. These seemingly fine
details are of importance st the point F which is a point of discontinuity
in the Dugdele solution. However, the condition (17) results in continuity
of Uy at F for the present solution.

The conditions a and b are satisfied by each of the basic step loads
s0 equality of O and Gy on the slit follows except at the point of

discontinuity, © = @ Only the gzeroth step load gives a contribution at

5

B = al’ and we find

o = Yyp = Py = -T (21)




Addition of all other steps of normal load and of the state of simple

tension does not ci.znge the value of UxF' Consequently the yield condition

20) can never Le satisfied by a combination of normal loads. This leads

us to cousider the addition of tangential loads on the yield ségment.

13



1V TANGENTIAL LOAD

The distribution of shear stresses will also be taken as a finite
sum of steps in tangential load of the kind illustrated in Fig. 5.

A

Fig. 5

THE STEP TANGENTIAL LOAD

Tangential loads of intensity 9 act in directions away from the y-axis
sO the shear stress at the boundary alternates in sign between successive
quadrants. The point Zy at the end of the stress free arc maps into
e-lek

O'k =

Calculations described in Appendix A result in the following stress components

for the typical kth load.

2qk
T, +0'y = = Re{L58k} (22)
RT3 (PSP Sy FC N S PSR R
% T % T Txy T T )78k 2 - z 58k 3

where the logarithmic function L58kis defined in Appendix A. As in the case
of normal loads we find that any single step distribution of tangential loads
leads to a stress singularity at the end of the slit. However, for this

case the singularity is of the logarithmic type in the stress component Txy'
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Detailed expansions about the points 6 = +1 show that the dominant terms
are directly proportional to q SO it is possible to obtain a finite stress

PP, e e o ey o s o amce T} P — o~ - v ~
at A by superposing several step loads such that

M
) g =0 (24)

This simply means that the total shear stress at the end of the slit is
Zero.

An additional condition can be derived from the fact that the
resultant of all forces applied to the yield segment FA must be statically
equivalent to the forces transmitted across the real elastic-plastic interface
I'. The vertical component of the resultant is not known, but, as we noted
earlier, the shear stress Txy vanishes identically on the centerline of the
real plastic region so the horizontal component is zero. The statement in
terms of the tangential loads is

M
N A
/ leos By-1) = 0 (25)
k=1
Equation (24) can be added to the last condition to cancel the term -1 in
the parentheses.

It is also necessary to determine the contributions of the tangential
loads to the vertical displacement and slope at the point F. However,
detailed calculations show that if the tangential loads satisfy conditions
(24) and (25) then the vertical displacement is identically zero on the
stress free portions of the edge of the slit. The discontinuities at the

ends of the loaded arcs have been excluded from the elastic region by starting

each of the step loads inside the yield segment FA, that is,

15



Therefore, the addition of the tangential

>

—

(26)

~
-

[\V)

loads does not modify the

conditions (15) and (16) which give zero opening and slope at the point F.

16




V YIELD CONDITIONS AT POINTS ¥ AND A

It is also useful to introduce a reference stress Y, for the tangential

cu
Q
Q
1]
h
a)
’_J
[¢]
'.J
m
s}
d
[ 6]
g)
£

loads. Then the dimensionless form of the tangential loa

corresponding stress components are

9 .
4 = T, (27)
. GX+G .2 5
S * S;p © —XYt = = }: d  Re {L58k} (28)
=1
g - Ux + 127
Syt - Sxt + 12Tth = Y£
(29)
M
1\ = 1 2 '
ST Z dk{ ~2Lsgy +E§i[g(€ +E) -6 - l]L 58k]
k=1

Similar dimensionless forms for stresses due to the normal loads are given

in equations (Al3) and (Alk4) of the Appendix. The total stresses are

obtained by addition of the components due to normal loads and to tangential
loads. Each of the dimensionless forms must be multiplied by the corresponding

reference stress Yh or Y£ and added. The total stresses are

X n xn txt
N
2
o, = Ynsyn + Ytsyt +T = XS+ Y.+ Y = Z P (30)
J=1
Txy = Ythyn + YtTxyt

Another condition will now be imposed to obtain the proper shape for
the elastic-plastic interface I'. The slope of that curve must be zerou at

point A as is indicated in Fig. 1. That is, the derivative of the yield

17



condition (19) with respect to x must be zero at point A or

3 | %0 do, Oy
= /20‘ - \_. + {20— =0 \——- } 6 2 I = 0 ( )
EEtA VUx Ty ox Sy %3x T Txy ox N ’ (31)

Many of these derivatives are gzero since most stress components are
constant on the edge of the slit near point A. For all three types of
loading the shear stress isazero at A and the normal stress on the end
of the slit 1s constant so ng = 0. Also, as we noted before, the
comggnents Gx and Uy are equal on the slit for the case of normal loads
SO §§£ vanishes at A for the normal loads as well as for the simple tension.

Hence, condition (31) reduces to the fellowing uncoupled condition on the

tangential loads.

?ﬁi =0 (32)

Reduction of the solution for the tangential loads as ( tends to a boundary

iB
point el gives the following formula for the stress component Gxt on the

s1it.

M

ZE: dk lnlsin26 - singek, (33)
k=1

Q
i}
t
o
=RV

Therefore, equation (32) will be fulfilled if the coefficients dk also

satisfy the condition

sin

M
P (34)
k=1 Bk

Now the coefficients dk have been selected so that the condition (31)

is fulfilled, and the c, have been chosen so that condition (15) and (16)

J
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on slope and displacement at point F are satisfied. The total stress field
given by equations (30) must now be adjusted so that the yield condition
(19) is satisfied at both point A and at point F. At point F most stress

components vanish and we obtain

xyF OyF = 0
. . (35)
2y N e .2 tolata? 2
%0 T %xnF T %xtr T T n Tl %% 7w Ytzdkmlsm ay - s By
=1 )

The stress components at point A are:

TxyA = O
N N
- _ 2.\
UyA = OynA + UytA + 7 = Ynj{jcj +0 + - Yh cjyj (36)
=0 J=1
N M
o3 = a + O = YZC - Y 2 1n sinEB
XA xnA xtA ~  n 3 t ,dk k
J=0 k=1

The coefficients cJ and dk are known so substituting the stress
components at F, given in equation (35), and the stress state at A, given
by equations (36) into the yield condition gives two equations which can

be solved for the two reference stresses Yh and Y£ in terms of the yield

stress Yé. Actually two roots are obtained from & quadratic equaticn,

and the one solution is chosen which gives yielding in tension at the point

F.
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VI DISCUSSICN OF NUMERICAL EXAMPLES

An Algol program was written for the evaluation of the stress and
displacement components of the basic normal and tangential problems at an
arbitrary point in the z-plane. A complex translator which has been developed
at Stanford Research Institute simplified the coding of the complex functions.

The weights ¢, and dk are chosen for each step load so that conditions

J
(9), (15), (26), (24), (25), and (34) are satisfied. Then the reference
stresses Yh and Y£ are calculated in terms of the yield stress Yé so that

the yield condition is satisfied at points F and A.

Next, a ray © = constant is chosen in the {-plane and computations
of stresses and displacements are made for values of IQI ranging from .0l
to 1.0. The corresponding points in the z-plane lie on a hyperbola, and
they approach the slit as [{|-L A simple iterative scheme is used to find
the point on the hyperbola where the yield condition (19) is satisfied.

These are pecints on the elastic-plastic interface, and they are shown by
dots in examples of Figures 6, and 7.

In the center of those diagrams are shown the corresponding displace-
ments of the real crack surface. The distribution of normal loads is shown
on the right hand yield segment and the tangential loads are sketched on the
left yield segment. Both distributions of loads and the opening of the crack

plotted with adjusted vertical scales, but the dots on the interface T are

plotted with equal vertical and horizontal scales.

are



VII CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

We have seen here that the discontinuity of tranverse displacement
and the shear s
by the proper distribution of normal loads. Introduction of the sdditionsl
tingential loads on the segment FA permits satisfaction of the yield
condition at both points F and A. Some of the sample calculations subjected
to these restrictions result in an elastic-plastic interface which resembles
the experimentally determined curves shown in Forman's report and sketched
approximately in Fig. 1. Of course there is still considerable freedom in
the choice of the distribution of loads, so we should not yet expect good
agreement.

Further work will include attempts to introduce a simple but reasonable
work-hardening model for the material inside the curve I'. This will provide
a simple relationship between stresses and displacements in the interior and
on the edge I’ of the plastic zone.

Compatability of the elastic and plastic regions will be enforced on
the interface ['. A program for increasing the applied tension T and,
consequently the size of the yield zone will be developed. As the load is
increased the distribution of stresses and strains in the plastic zone will

be studied to attempt to define a failure criterion.
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APPENDIX A

THE COMPLEX POTENTIALS FOR STEP NORMAL AND TANGENTIAL LOADS

The case of generalized plane stress in an infinite elastic plane
subjected to arbitrary loads on an elliptical boundary can be solved by
complex varisble methods which are described in the books by Muskhelishvili
and Sokolnikoff. The notation of the latter book will be used here.

The mapping function (3) transforms the exterior of the ellipse in
the z-plane into the interior of the unit circle in the {-plane. Boundary

conditions are expressed by the integral

R(s) = 14 (T am)as - S [-p(z')+q(z') Jaz’ (A1)

U Nt T

O 0

where s 1s arc length on the boundary curve C in the z-plane and TX and
Ty are respectively the horizontal and vertical components of boundary
forces per unit of arc length for a plate of unit thickness. Note that
positive p corresponds to a compressive normal stress on C and positive g
corresponds to a negative shear stress. Therefore p(z') = +p‘j on the two
loaded arcs for the normal case, Fig. L4, and is zero elsewhere. However,
a(z') = +Qqy on the loaded arcs in the first and third quadrants and
q(z") = -q, 1in the second and fourth quadrants of the z-plame, Fig. 5.

If the lower limit of integration 59 is chosen to be the wvalue

corresponding to the point E, then the integral for the normal loading

glves
Z-2 ) for z on arc z,, A, EJ
Z,~-2 " z,, B, -z
R(s) = -pd g’ v (a2)
zj+z, ' _Zj’ D, -z
0 " ~Zy) E, 2



The transformation to the corresponding boundary point o in the &-plane
is simply

Fo) = P(s) (A3

3)
where z is replaced by the function w(.) in equations (A2). Then the first

complex potential QO(S) is obtained from the following integral taken around

the boundary vy of the unit circle.

2mi og=C o)

©(0) = LS ﬁ’m[i ] l}do (ak)
Y

For the simple loading considered here the function $°(.) can be expressed
in terms of elementary integrals including the function ln(o-(). The
integral must vary continuously as o transverses the various arcs of y which
determines the braﬁch of the logarithm function and establishes the bounds
on the imaginary parts of Llj and ng given in equations (6). Finally the

ellipse is flattened to a slit so that m ~ 1 and z, - 23 and we find

J
P 4Riy
Py = - 9.1 ,(¢ - —d .
The second complex potential is calculated from the relaticn
°(¢) = ¢.2241) a9°(0) L2 [ F7(0) do (46)
vle) = 1_€2 ac omi > O-o

Y

Several terms can be cancelled to obtain the following results

Oy, P .2
ap(g) _ _ I3 JpE0-1 R, .
ac - T om {R 2 byt 3 L‘“j} (A7)
5 ¢
°(g) = - i R -2 8ig, - 2.L (A8)
b \s) = 2mi l_g2 J 3734

The following formulae are given by Sokolnikoff for the stress and

displacement components in the z-plane.

Az




Aenl 2)

— j \Zg YN

ot Uy 4Re :XEE— \A9)
- () |, dy(2)

o - 0+ i2T = 2|z 5=+ (A10)
h's X Xy az- dz

2u(u-1v) = % 52) - 3 B2 (o) (A11)

W

U
where 1 = i+v for generalized plane stress. The complex potentials at

corresponding points in the z- and [-planes are given by

o(z) = 9°(L) ¥(z) = §°0) (A12)

Chain differentiation and the mapping function (3) can be used to relate
derivatives at corresponding points in the two planes.

Equations (La) and (4b) express the components of stress due to a
single normal load. If the dimensionless load coefficients cJ are

introduced and the finiteness condition (9) is used then the dimensionless

forms of displacements and stresses due to all the steps of normal load are

O'X+O' > N
Sen + Sy_n = ——lY = =) % Im{Luj( ORI (A13)
n 3=0
o =0 +iZ2T
syn -8+ i2Txyn = 3
n (p1k)
5 QE _ 1 N ' c,2
R R ) ey P (0) 550
- v §=0 J=0
s _ 2p u-iv
Un 1Vh - Yh R (A15)
¥ N N . N
I SN S § T d 1 _g.
= eni{ (€ + f) [”LCJ b j *ECJ Lyj } z R Z B 35}
- 0 0 0 0 ;
18 1

Letting - tend to = boundary point e on the unit circle, see Fig. 4, and

extracting the contribution of the jth step to the sums in (Al5) gives the

A3




expression (11) for the displacement on the slit.

The case of the fundamental step in shear loads sketched in Fig. 5
can be solved in a similar manner. However, the tangential load q changes
from +G to =Gy at points A and D of the boundary which approximately
doubles the amount of detailed calculations. The potentials can be reduced

to the following forms for a single step load.

Q
() = 5% {R(g + %)L58k - 7 [Dgyoy - 1871 + MR[L . - in]= (M16)
o) = =% lam(r + Y1 L LRL (A17)
v o = 53 ¢+ Thsgk ~ Algrox * Rk 7

where the abbreviations are

Logy = Do = Teg * Do = Igy Lorox = Lok * Tiox
.y, 1C I
LSk = 1n Py Lék = 1n -7
k
-0, -(
L = 10 -0,~¢C Lo n 3T (Am18)
-5, - g -
L9k = In ey LlOk = 1n —
k g, -5
k
= -1-
Ly = 017
The imaginary parts of each of the functions LSk to Lllk also lie

in the interval 0 to 2m. The positive angles marked in Fig. 5 represent
the imaginary parts of the first four functions LSk to L8k'
Further straightforward, but tedious, calculations lead to the

dimensionless stresses in equation (28) and (29) due to all of the step

tangential loads. The corresponding dimensionless displacements are

AL



UJC - 1Vt =
where the new sums are
M
5 = Z
k=1
M
s. = Y
3 Y-
k=1

@E u-iv 3____ - l = _ = —_
Y, R = En{n[(, +::)Sl S3 +1‘le;]
F ° (A19)
+L2(C + %) - (; + %)181 - S3 + "-LSLL‘!
s cJ J
M
L s, = Z d
dLsek 2 % T LUsek
k=1
(A20)
M
Zk “\
7 %loiox S, = Z el
k=1

A5
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AN EXAMPLE OF STEP DISTRIBUTIONS OF NORMAL AND TANGENTIAL LOAD.

THE DOTS REPRESENT POINTS ON THE ELASTIC-PLASTIC INTERFACE.
CRACK OPENING IS SHOWN WITH AN EXAGGERATED SCALE.

N



1-ST—~
1.+
T_XX o
Y -360 3 .360 ?1
S S
0. L
e ) : b g
a- N ‘ "
oot -
o . .
-0. 5
—].GO
"‘1-5’" - T i T ~ "' - "‘"‘]""#""""“_"‘T“ T
_1-5 —1-1] "O-S l):a 0-5 1'0
T/Y5= 0.01% £/
Fig. 7

AN EXAMPLE OF STEP DISTRIBUTIONS OF NORMAL AND TANGENTIAL LOAD.

THE DOTS REPRESENT POINTS ON THE ELASTIC-PLASTIC INTERFACE.
CRACK OPENING IS SHOWN WITH AN EXAGGERATED SCALE.




DISTRIBUTION LIST

NAS1-5885

NASA Langley Research Center

Langley Station

Hampton, Virginia 23365

Attention: Contracting Officer, Mail Stop 126
Researcn Reports Division, Mail Stop 122
R. L. Zavasky, Mail Stop 117
Harvey G. McComb, Jr., Mail Stop 188c

NASA Ames Research Center
Moffett Field, California 94035
Attention: Liorary

NASA Flight Research Center
P. 0. Box 273

Edwards, California 93523
Attention: Library

NASA Goddard Space Flignht Center
Greenbelt, Maryland 2)771
Attention: Livprary

Jet Propulsion Labvoratory
4500 Grove Drive

Pasadena, California 91103
Attention: Liobrary

NASA Manned Spacecraft Center
2101 Webster Seavrook Road
Houston, Texas 77258
Attention: Liorary

NASA Marshall Space Flight Center
Huntsville, Alabama 350512
Attention: Livrary

NASA Western Operations

150 Pico Boulevard

Santa Monica, California 904J6
Attention: Library

NASA Wallops Station
Wallops Island, Virginia 23337
Attention: @Ldbrary

NASA Electronics Research Center
575 Technology Square

Campridge, Massachusetts 02139
Attention: Livbrary

Copies

M e



DISTRTRUTTON LIST

NAS1 -5885
CoEies

NASA Lewis Research Center

21207 Brookpark Road

Cleveland, Ohio 4h135

Attention: Library, Mail Stop 3-7 1

NASA John F. Kennedy Space Center
Kennedy Space Center, Florida 32899
Attention: Code ATS-132 1l

NASA Michoud Assembly Facility

P. 0. Box 26078

New Orleans, Louisiana 70126

Attention: Code I-Mich-D 1

National Aerocnautics and Space Administration

Washington, D.C. 20546

Attention: Livrary, Code USS-10 1
NASA Code RA 1

NASA Scientific and Technical Information Facility

P. 0. Box 33

College Park, Maryland 20740 56 plus
reproducible



